

#### **Application Note**

# Testing Schneider Electric Easergy relays with sensor inputs for LPCTs and LPVTs

Author Jakob Siemayr | *jakob.siemayr*@omicronenergy.com

Date Feb 11, 2021

Related OMICRON Product CMC test sets, CMLIB A, LLX1

Application Area Protection testing

Keywords Sensors, low power instrument transformers (LPITs), LPCT, LPVT

Version 1.0

Document ID ANS\_21005\_ENU



### **General information**

OMICRON electronics GmbH, including all international branch offices, is henceforth referred to as OMICRON.

The product information, specifications, and technical data embodied in this Application Note represent the technical status at the time of writing and are subject to change without prior notice.

We have done our best to ensure that the information given in this Application Note is useful, accurate and entirely reliable. However, OMICRON does not assume responsibility for any inaccuracies which may be present.

OMICRON translates this Application Note from the source language English into a number of other languages. Any translation of this document is undertaken for local requirements, and in the event of a dispute between the English and a non-English version, the English version of this note shall govern.

All rights, including translation, reserved. Reproduction of any kind, for example, photocopying, microfilming, optical character recognition, and/or storage in electronic data processing systems, requires the explicit consent of OMICRON. Reprinting, wholly or partly, is not permitted.

© OMICRON 2021 All rights reserved. This Application Note is a publication of OMICRON.



### Table of content

| 1 | Safe  | ty inst  | ructions                                        | 4    |
|---|-------|----------|-------------------------------------------------|------|
| 2 | Intro | ductio   | n                                               | 5    |
| 3 | Con   | nectio   | ns at the relay                                 | 6    |
| 4 | Test  | equip    | ment                                            | 8    |
|   | 4.1   | With C   | CMC 356, CMC 256plus and CMC 353 test sets      | 8    |
|   |       | 4.1.1    | Required equipment                              | 8    |
|   |       | 4.1.2    | Test setup example                              | 10   |
|   | 4.2   | With C   | CMC 430 test sets                               | 11   |
|   |       | 4.2.1    | Required equipment                              | 11   |
|   |       | 4.2.2    | Test setup example                              | 12   |
| 5 | Test  | config   | juration                                        | . 13 |
|   | 5.1   | Test o   | bject                                           | 13   |
|   | 5.2   | Hardw    | /are configuration                              | 13   |
|   |       | 5.2.1    | With CMC 356, CMC 256plus and CMC 353 test sets | 13   |
|   |       | 5.2.2    | With CMC 430 test sets                          | 16   |
|   |       | 5.2.3    | Routing of analog outputs                       | 19   |
| 6 | List  | of liter | ature                                           | . 20 |



### **1** Safety instructions

This Application Note may only be used in conjunction with the relevant product manuals which contain all safety instructions. The user is fully responsible for any application that makes use of OMICRON products.

Instructions are always characterized by a > symbol, even if they are included in a safety instruction.

#### NOTICE

#### Equipment damage or loss of data possible

- Carefully read and understand the content of this Application Note as well as the manuals of the systems involved before taking them into operation.
- Please contact OMICRON support if you have any questions or doubts regarding the safety or operating instructions.
- Follow each instruction listed in the manuals, especially the safety instructions, since this is the only way to avoid the danger that can occur when working on high voltage or high current systems.
- Only use the equipment involved according to its intended purpose to guarantee safe operation.
- Existing national safety standards for accident prevention and environmental protection may supplement the equipment's manual.
- > Before starting a test always check that the test signals are suitable for your system under test.

Only experienced and competent professionals that are trained for working in high voltage or high current environments may implement this Application Note. Additionally, the following qualifications are required:

- Authorized to work in environments of energy generation, transmission or distribution, and familiar with the approved operating practices in such environments.
- Familiar with the five safety rules.
- Good knowledge/proficient in working with CMC test sets, CMLIB A and LLX1.



### 2 Introduction

Protection relays of Schneider Electric's Easergy range are available in different versions concerning their analog inputs:

- 1. for conventional instrument transformers (VT, CT)
- 2. for LPCTs/LPVTs (low power CT, low power VT)

This application note explains the required equipment for testing the LPCT/LPVT version of these relays and how to configure such a test.



### **3** Connections at the relay

The sensor inputs of Schneider Electric Easergy relays use RJ45 connectors. As can be seen in the following picture on slot A there are five RJ45 connectors for connecting sensors.



Figure 1: Easergy P5U20 rear panel (LPCT/LPVT version)

The LPCTs for IL1, IL2 and IL3 are connected directly to RJ45-1, RJ45-2 and RJ45-3.

V1, V2 and V3 are combined to one single RJ45 connection (**RJ45-4**). To achieve this the three LPVTs are connected to a so-called LPVT hub, which then is connected to RJ45-4 using a single connection.





Figure 2: Easergy P5U20 (LPCT/LPVT version) rear terminal designations



Figure 3: LPVT hub connector connected to Easergy P5 protection relay



### 4 Test equipment

### 4.1 With CMC 356, CMC 256plus and CMC 353 test sets

#### 4.1.1 Required equipment

These test sets have six (12 with Option LLO-2) built-in low level outputs on the LL out 1 - 6 interface connector that can be found on the back panel of the test set.



Figure 4: Back panel of a CMC test set with interfaces "LL out 1 - 6" and "LL out 7 - 12"

A CMLIB A and Easergy cable with corresponding pin assignment of the RJ45 connector are used to connect the low-level outputs of the CMC to the sensor inputs of a Schneider Electric Easergy relay.





Figure 5: CMLIB A



Figure 6: Easergy cable for CMLIB A



#### 4.1.2 Test setup example



# Figure 102 - Connection diagram for testing the LPCT and LPVT measurement accuracy

Figure 7: Connection diagram for testing from Easergy P5 User Manual

The generically shown voltage generator in the picture above is replaced by the CMC test set with CMLIB A and connections are made with the Easergy cables:



Figure 8: Test setup with CMLIB A and Easergy cables



#### 4.2 With CMC 430 test sets

#### 4.2.1 Required equipment

LLX accessory units are used to expand CMC 430 test sets with six low level outputs. They are connected to one of the CMC 430s expansion ports, which powers and controls them.

LLX1 is the right choice for testing devices with sensor inputs (such as Schneider Electric Easergy protection relays). A wide range of cables are available for easily connecting LLX1 to different devices that have specific connectors and pinouts.



Figure 9: LLX1 accessory unit

| Cable type | Suitable for               | Connector type | Order no. |
|------------|----------------------------|----------------|-----------|
| LAB1       | ABB Relion                 | RJ45           | VEHK0306  |
| LAB2       | ABB REF542plus             | 2 x Twin-BNC   | VEHK0307  |
| LSI1       | Siemens Siprotec Compact   | RJ45           | VEHK0308  |
| LSE2       | Schneider Electric Easergy | 2 x RJ45       | VEHK0311  |

Cable type LSE2 is available for testing Schneider Electric Easery protection relays:



Figure 10: LSE2 test cable



#### 4.2.2 Test setup example

LSE2 test cables have two ends with RJ45 connectors in order to connect to the separate LPVT and LPCT input connectors of the respective phases:



Figure 11: Test setup with LLX1 and LSE2 test cables



### **5** Test configuration

#### 5.1 Test object

While with conventional VTs and CTs it is very common to work in secondary voltages and currents, this is not the case when working with sensors. Instead it is recommended to work completely with primary values. Therefore set "V nom (secondary)" and "I nom (secondary)" to the same value as the primary counterparts. Do not forget to adapt the limits to primary values as well!

| Device                   | Nominal Values     |                 | Other Device Properties          |                |
|--------------------------|--------------------|-----------------|----------------------------------|----------------|
| lame/description:        | Number of phases:  | O 2 💿 3         | Drop-out time:                   | 20,000 ms      |
| lanufacturer:            | fnom:              | 50,000 Hz       | -Limits                          |                |
|                          |                    |                 | V max:                           | 20,000 kV (L-L |
| evice type:              | V nom (secondary): | 20,000 kV (L-L) | I max:                           | 1,000 k        |
| evice address:           |                    | 11,547 kV (L-N) | - Overload Detection Sensitivity |                |
|                          |                    |                 | High O Custom                    | 50,000 m       |
| erial/model number:      | V primary:         | 20,000 kV (L-L) | ○ Low ○ Off                      |                |
|                          |                    | 11,547 kV (L-N) | Dahayaan Daatish Cibara          |                |
|                          |                    |                 | Debounce time:                   | 3,000 m        |
| dditional information 1: | I nom (secondary): | 400,000 A       | Deglitch time:                   | 0,000          |
| dditional information 2: | I primary:         | 400,000 A       |                                  |                |
| ubstation                |                    | Factors         | ]                                |                |
| ame:                     | VLN/ VN:           | 1,732           |                                  |                |
| ddress:                  | IN / I nom:        | 1,000           |                                  |                |
| ay                       |                    |                 |                                  |                |
| lame:                    |                    |                 |                                  |                |
| ddress:                  |                    |                 |                                  |                |

Figure 12: Device settings with configured Nominal Values and Limits

### 5.2 Hardware configuration

#### 5.2.1 With CMC 356, CMC 256plus and CMC 353 test sets

► First, it is recommended to deactivate the voltage and current outputs of the test set. To do so hit the button "Configure..." next to the test set and then set the outputs to "<not used>":

| Hardware Configuration                 |                                |                  |                                      |  |
|----------------------------------------|--------------------------------|------------------|--------------------------------------|--|
| General Analog Outputs Binary / Analog | g Inputs Binary Outputs DC Ana | log Inputs       |                                      |  |
| CMC356                                 | Configure                      | Voltage Outputs: | 3x300V; 85VA @ 85V; 1Arms            |  |
| No extension device                    | <ul> <li>Configure</li> </ul>  | Aux. DC:         | 5x52A; +50VA @ 25A; 25Vrms<br>115,0V |  |



| Configure Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| CMC356 Voltage Outputs<br>4x300V; 85VA @ 85V; 1Arms<br>3x300V; 85VA @ 85V; 1Arms<br>1x300V; 150VA @ 75V; 2Arms<br>3x300V; 50VA @ 75V; 660mArms; VE automatic<br>1x600V; 250VA @ 200V; 1,25Arms<br><b>Constant of 150V</b> , 250MB<br><b>Constant of 150V</b> , 250MB                                                                                                                                                                                                                                                   | Voltage Factorn/a             |
| Connect VT Remove VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fan Mode<br>Automatic<br>Max. |
| CMC356 Current Outputs<br>3x32A; 430VA @ 25A; 25Vrms; IE automatic<br>3x64A; 860VA @ 25A; 55Vrms; IE automatic<br>3x54A; 860VA @ 25A; 50Vrms<br>1x32A; 1,74kVA @ 25A; 50Vrms<br>1x128A; 1kVA @ 50A; 50Vrms<br>1x128A; 1kVA @ 50A; 50Vrms<br>1x128A; 1VVA @ 40A; 25Vrms<br>1x64A; 500VA @ 40A; 25Vrms<br>1x32A; 870VA @ 20A; 50Vrms<br>1x32A; 870VA @ 20A; 50Vrms |                               |
| <not used="">       Connect CT       Remove CT</not>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fan Mode<br>Automatic<br>Max. |

Then you can configure the voltage and current sensors at "Amplifier(s) / Low Level Outputs / Sensor Simulation". Click the first drop-down and select "Add voltage sensor":

| <none></none>                  | - | Configure  |
|--------------------------------|---|------------|
| <none></none>                  | 1 |            |
| CMA 56 (??001?)                |   |            |
| CMA 56 (??002?)                |   | Configure  |
| CMA156 (??001?)                | 1 | conngarenn |
| CMA156 (??002?)                |   |            |
| CMS156 (??001?)                |   |            |
| CMS156 (??002?)                |   | Configure  |
| Add voltage amplifier          |   |            |
| Add current amplifier          |   |            |
| Add voltage sensor             |   | C . C      |
| Add current sensor             |   | Configure  |
| Add standard low level outputs |   |            |



► The dialog for configuring the voltage sensor will open. At "Low level output" select "LL out 1-3" and enter the ratio of the LPVT:

| Configure Voltage Sensor | Simulation |                        | ×      |
|--------------------------|------------|------------------------|--------|
| Low level output:        | LL out 1-3 | Use correction factors |        |
| Display value (RMS):     | 20,00 kV   |                        |        |
| Output value (RMS):      | 3,25 V     |                        |        |
|                          |            |                        |        |
|                          |            |                        |        |
|                          |            |                        |        |
|                          |            |                        |        |
|                          |            |                        |        |
|                          |            | Or Court               | Delate |
|                          |            | UK Cancel              | Delete |

► The configuration of the current sensor is done in a very similar way. Click the second drop-down and select "Add current sensor":

| /oltage Sensor 1                                                                              | <b>•</b> | Configure |
|-----------------------------------------------------------------------------------------------|----------|-----------|
| <none></none>                                                                                 | -        | Configure |
| <none><br/>CMA 56 (??001?)<br/>CMA 56 (??002?)<br/>CMA156 (??001?)<br/>CMA156 (??002?)</none> |          | Configure |
| CMS156 (??001?)<br>CMS156 (??002?)<br>/oltage Sensor 1                                        | [        | Configure |
| Add voltage amplifier<br>Add current amplifier<br>Add voltage sensor                          |          |           |
| Add current sensor                                                                            |          |           |
| Add current sensor<br>Add standard low level outputs                                          | -        |           |

► The dialog for configuring the current sensor will open. At "Low level output" select "LL out 4-6" and enter the ratio of the LPCT. Additionally, select the sensor type "Linear":



| Configure Current Sensor | Simulation |                        |        | ×    |
|--------------------------|------------|------------------------|--------|------|
| Low level output:        | LL out 4-6 | Use correction factors |        |      |
| Display value (RMS):     | 100,00 A   |                        |        |      |
| Output value (RMS):      | 22,50 mV   |                        |        |      |
| Sensor type:             | Linear     |                        |        |      |
|                          |            |                        |        |      |
|                          |            |                        |        |      |
|                          |            |                        |        |      |
|                          |            |                        |        |      |
|                          |            | OK Cancel              | Delete | Help |

#### 5.2.2 With CMC 430 test sets

► First, it is recommended to deactivate the voltage and current outputs of the test set. To do so hit the button "Configure..." next to the test set and then set the outputs to "<not used>":

| Hardware Configuration                        |                               |                  |                               |  |
|-----------------------------------------------|-------------------------------|------------------|-------------------------------|--|
| General Analog Outputs Binary / Analog Inputs | Binary Outputs DC Analo       | og Inputs        |                               |  |
| Test Set(s)                                   | <u> </u>                      |                  |                               |  |
| CMC430                                        | <ul> <li>Configure</li> </ul> | /oltage Outputs: | 6x150V; 25VA @ 100V; 250mArms |  |
|                                               |                               | Current Outputs: | 3x12,5A; 96VA @ 8A; 12Vrms    |  |
| No extension device                           | Configure                     | Aux. DC:         | 115,0V                        |  |



| Configure Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| CMC430 Voltage Outputs<br>6x150V; 25VA @ 100V; 250mArms<br>3x150V; 25VA @ 100V; 250mArms<br>3x150V; 25VA @ 100V; 250mArms<br>3x150V; 25VA @ 100V; 250mArms<br>1x300V; 50VA @ 200V; 250mArms<br>5x500V; 50VA @ 200V; 250mArms<br>5x50V = 20 | - Voltage Factor                                                                      |
| Connect VT Remove VT CMC430 Current Outputs 2112 54.051/4 @ 04: 17/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fan Mode                                                                              |
| 3x12,5x; 50VA @ 8A; 12Vrms       1x37,5A; 150VA @ 16A; 12Vrms       Arrow Box       Interset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |
| Connect CT Remove CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fan Mode <ul> <li>Automatic</li> <li>Max.</li> </ul> OK             OK         Cancel |

Then you can find LLX1 at "Amplifier(s) / Low Level Outputs / Sensor Simulation". Click the first drop-down next to it and select "Add voltage sensor":

| LLX1          | - | <none></none>                                        | - | Configure |
|---------------|---|------------------------------------------------------|---|-----------|
|               |   | <none></none>                                        |   |           |
|               |   | Add voltage sensor                                   |   | Configure |
|               |   | Add current sensor<br>Add standard low level outputs |   |           |
| <none></none> | * | <none></none>                                        | * | Configure |
|               |   | <none></none>                                        | • | Configure |
| <none></none> | * | <none></none>                                        | • | Configure |
|               |   | <none></none>                                        | I | Configure |



▶ The dialog for configuring the voltage sensor will open and you can enter the ratio of the LPVT:

| Configure Voltage Sense                     | or Simulation      |                        | ×           |
|---------------------------------------------|--------------------|------------------------|-------------|
| Low level output:                           | LL out 1-3         | Use correction factors |             |
| Display value (RMS):<br>Output value (RMS): | 20,00 kV<br>3,25 V |                        |             |
| Residual channel                            |                    |                        |             |
|                                             |                    | OK Cancel              | Delete Help |

► The configuration of the current sensor is done in a very similar way. Click the second drop-down and select "Add current sensor":

| LX1           | * | Voltage Sensor 1                                          | - | Configure |
|---------------|---|-----------------------------------------------------------|---|-----------|
|               |   | <none></none>                                             | • | Configure |
| <none></none> | * | <none><br/>Voltage Sensor 1<br/>Add voltage sensor</none> |   | Configure |
|               | l | Add current sensor<br>Add standard low level outputs      |   | Configure |
| <none></none> | * | <none></none>                                             | - | Configure |
|               |   | <none></none>                                             | - | Configure |

The dialog for configuring the current sensor will open and you can enter the ratio of the LPCT. Additionally, select the sensor type "Linear". For the signal type "Single-ended" is the correct choice for Schneider Electric Easergy devices:



| Configure Current Sensor | Simulation                        | x |
|--------------------------|-----------------------------------|---|
| Low level output:        | LL out 4-6 Use correction factors |   |
| Display value (RMS):     | 100,00 A                          |   |
| Output value (RMS):      | 22,50 mV                          |   |
| Sensor type:             | Linear 🔹                          |   |
| Signal type:             | Single-ended *                    |   |
| Residual channel         |                                   |   |
|                          |                                   |   |
|                          |                                   |   |
|                          | OK Cancel Delete Help             |   |

#### 5.2.3 Routing of analog outputs

Don't forget to go to the Analog Outputs tab to check if all your defined sensor outputs are routed properly:

| d w<br>eral | Analog Outputs               | Binary / Analog I | nputs Binary Out       | iputs I            | DC Anal | og Input | ts |                    |   |   |   |
|-------------|------------------------------|-------------------|------------------------|--------------------|---------|----------|----|--------------------|---|---|---|
|             |                              |                   |                        | Voltage Sensor 1 V |         |          | ١V | Current Sensor 1 I |   |   |   |
|             | Test Module<br>Output Signal | Display Name      | Connection<br>Terminal | 1                  | 2       |          | N  | 1                  | 2 |   | N |
|             | V L1-E 🗸                     | VL1-E             |                        | Х                  |         |          |    |                    |   |   |   |
|             | V L2-E                       | V L2-E            |                        |                    | Х       |          |    |                    |   |   |   |
|             | V L3-E                       | V L3-E            |                        |                    |         | Х        |    |                    |   |   |   |
|             | IL1                          | IL1               |                        |                    |         |          |    | Х                  |   |   |   |
|             | 1 L2                         | 1L2               |                        |                    |         |          |    |                    | Х |   |   |
|             | 1 L3                         | 1 L 3             |                        |                    |         |          |    |                    |   | Х |   |



### 6 List of literature

[1] Schneider Electric, 2019, Easergy P5 User Manual, Version P5/EN M/22A



## Support

When you are working with our products we want to provide you with the greatest possible benefits. If you need any support, we are here to assist you.



### 24/7 Technical Support – Get Support

#### www.omicronenergy.com/en/support

At our technical support hotline, you can reach competent, well-educated technicians for all of your questions. Around the clock and free of charge.

Make use of our 24/7 international technical support hotline:

| Europe / Middle East / Africa | +43 59495 4444  |                |
|-------------------------------|-----------------|----------------|
| Americas                      | +1 713 830-4660 | +1 800-OMICRON |
| Asia-Pacific                  | +852 3767 5500  |                |

Additionally, on our website you can find our Service Center or Sales Partner closest to you.



### **Customer Portal – Stay Informed**

#### https://my.omicronenergy.com/

The Customer Portal on our website is an international knowledge exchange platform. Download the latest software updates for all our products and share your own experiences in our user forum.

Browse through the knowledge library and find application notes, conference papers, articles about daily working experiences, user manuals and much more.

### **OMICRON Academy – Learn More**



#### www.omicron.academy

Learn more about your product in one of the training courses offered by the OMICRON Academy.

For more information, additional literature, and detailed contact information of our offices worldwide please visit our website.